LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
M.Sc. DEGREE EXAMINATION – STATISTICS		
THIRD SEMESTER – NOVEMBER 2018		
16/17PST3MC02/ST 3816/ST 3812 – STOCHASTIC PROCESSES		
COCEAT LUX VESTION		
Date: 27-10-2018 Dept. No Time: 09:00-12:00	Max. : 100 Marks	
Answer all the questions Section A	(10 x 2 = 20 Marks)	
1. Define state space and index parameter of a stochast	ic process.	
2. When a stochastic process is called a point process?		
3. Write any two properties of the period of a state.		
4. State Abel's lemma.		
5. Write the postulates of a pure birth process.		
6. Define a counting process.		
7. Define supermartingale for a stochastic process.		
8. Cite an example for a branching process.		
9. Define a covariance stationary process.		
10. Write a note on discrete renewal equation.		
Section B		
Answer any five questions	(5 x 8= 40 Marks)	
11. Explain the following:		
(i) Process with stationary independent increment	ts.	
(ii) Martingales.	(4+4) marks	
12. If a process {X _t , t \in T } where T = [0, ∞] or T=(0,1)	,2,) has stationary independent	
increments and has a finite mean , show that $E[X_t] = m_0 + m_1 t$ where $m_0 = E[X_0]$ and		
$m_1 = E[X_1] - m_0.$		
13. Show that one- dimensional random walk is recurrent.		
14. State and prove the theorem used to find the stationary probability distribution of the Markov chain.		
15. Discuss the limiting behavior of P_{ij}^{n} when i is transient j is recurrent.		

- 16. Under the condition that X(0) = N = 1, determine the mean and variance of the Yule process.
- 17. Show that the variance of the sum of the independently and identically distributed random variables with finite second moment is a martingale.
- 18. Establish the generating function relations for branching process.

Section C

Section C		
Answer any two questions	$(2 \times 20 = 40 \text{ marks})$	
19.(a) Prove that a state i is recurrent if and only if $\sum_{i=1}^{\infty} P_{ii}^{n} = \infty$.		
(b) Prove that the three - dimensional random walk is transient.	(5 +15).	
20. (a) Derive $P_n(t)$ for the Poisson process.		
(b) Derive backward and forward Kolmogorov differential equations of birth and		
death processes.	(10 + 10)	
21. Establish the generating function relations for branching processes and hence find		
mean and variance.		
22. Explain the following:		
(i) a stationary process on the circle		
(ii) Stationary Markov chains		
(iii) Schwartz 's inequality		
(iv) Uniqueness of mean square limit		
(v) Cauchy criterion for convergence	(5 x 4 = 20)	
