LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2018
16/17PST3MCO2/ST 3816/ST 3812 - STOCHASTIC PROCESSES

Date: 27-10-2018
Time: 09:00-12:00

Section A

Answer all the questions
(10×2 = 20 Marks)

1. Define state space and index parameter of a stochastic process.
2. When a stochastic process is called a point process?
3. Write any two properties of the period of a state.
4. State Abel's lemma.
5. Write the postulates of a pure birth process.
6. Define a counting process.
7. Define supermartingale for a stochastic process.
8. Cite an example for a branching process.
9. Define a covariance stationary process.
10. Write a note on discrete renewal equation.

Section B

Answer any five questions
($5 \times 8=40$ Marks)
11. Explain the following:
(i) Process with stationary independent increments.
(ii) Martingales.
12. If a process $\left\{\mathrm{X}_{\mathrm{t}}, \mathrm{t} \in T\right\}$ where $\mathrm{T}=[0, \infty]$ or $\mathrm{T}=(0,1,2, \ldots)$ has stationary independent increments and has a finite mean, show that $E\left[X_{t}\right]=m_{0}+m_{1} t$ where $m_{0}=E\left[X_{0}\right]$ and $\mathrm{m}_{1}=\mathrm{E}\left[\mathrm{X}_{1}\right]-\mathrm{m}_{0}$.
13. Show that one- dimensional random walk is recurrent.
14. State and prove the theorem used to find the stationary probability distribution of the Markov chain.
15. Discuss the limiting behavior of $P_{i j}{ }^{n}$ when i is transient j is recurrent.
16. Under the condition that $\mathrm{X}(0)=\mathrm{N}=1$, determine the mean and variance of the Yule process.
17. Show that the variance of the sum of the independently and identically distributed random variables with finite second moment is a martingale.
18. Establish the generating function relations for branching process.

Section C

Answer any two questions

19.(a) Prove that a state i is recurrent if and only if $\sum_{i=1}^{\infty} P_{i i}{ }^{n}=\infty$.
(b) Prove that the three - dimensional random walk is transient.
20. (a) Derive $\mathrm{P}_{\mathrm{n}}(\mathrm{t})$ for the Poisson process.
(b) Derive backward and forward Kolmogorov differential equations of birth and death processes.
21. Establish the generating function relations for branching processes and hence find mean and variance.
22. Explain the following:
(i) a stationary process on the circle
(ii) Stationary Markov chains
(iii) Schwartz ' s inequality
(iv) Uniqueness of mean square limit
(v) Cauchy criterion for convergence

